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Abstract. The Brunn-Minkowski inequality states that the volume of
compact sets K, L ⊂ Rn satisfies vol(K+L)1/n ≥ vol(K)1/n+vol(L)1/n.
In this paper we obtain two discrete analogs of it for the cardinality of
finite subsets of the integer lattice Zn. On one hand we prove that if

A, B ⊂ Zn are finite, then
∣∣Ā + B

∣∣1/n ≥ |A|1/n + |B|1/n, where Ā is an
extension of A which is constructed by adding some new integer points
in a particular way; on the other hand, removing points of A, say, an

equivalent inequality of the form |A + B|1/n ≥
∣∣r(A)

∣∣1/n
+ |B|1/n can

be obtained, where r(A) is the reduced set of A. Both inequalities are
sharp, and it can be seen that the number of additional points in Ā
cannot be too large, and depends only on A. Finally we also prove
that the classical Brunn-Minkowski inequality for compact sets can be
obtained as a consequence of these new discrete versions.

1. Introduction and notation

As usual, we write Rn to represent the n-dimensional Euclidean space,
and we denote by ei the i-th canonical unit vector. The n-dimensional
volume of a compact set K ⊂ Rn, i.e., its n-dimensional Lebesgue measure, is
denoted by vol(K), and as a discrete counterpart, we use |A| to represent the
cardinality of a finite subset A ⊂ Rn. We write πi1,...,ik , 1 ≤ i1, . . . , ik ≤ n,
to denote the orthogonal projection onto the k-dimensional coordinate plane
Rei1 + · · · + Reik . For the sake of brevity we just write Hi = Re1 + · · · +
Rei−1 + Rei+1 + · · · + Ren to represent the i-th coordinate hyperplane and
π(i) = π1,...,i−1,i+1,...,n for the corresponding orthogonal projection onto Hi.

Let Zn be the integer lattice, i.e., the lattice of all points with integer
coordinates in Rn, and let Zn

+ =
{
x ∈ Zn : xi ≥ 0

}
. Special sets that will

appear throughout the paper are the lattice sets: a finite set A ⊂ Zn is a
(convex) lattice set if A = (conv A)∩Zn, where conv A represent the convex
hull of A. In particular, we denote by Cn

r , r ∈ Z>0, the lattice cube

Cn
r = r[0, 1]n ∩ Zn,

with r + 1 integer points in its edges.
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Relating the volume with the Minkowski addition of compact sets, one is
led to the famous Brunn-Minkowski inequality. One form of it states that if
K, L ⊂ Rn are compact, then

(1.1) vol(K + L)1/n ≥ vol(K)1/n + vol(L)1/n,

with equality, if vol(K)vol(L) > 0, if and only if K and L are homothetic
compact convex sets. Here + is used for the Minkowski (vectorial) sum, i.e.,

A + B = {a + b : a ∈ A, b ∈ B}
for any A,B ⊂ Rn. The Brunn-Minkowski inequality is one of the most pow-
erful results in Convex Geometry and beyond: for instance, its equivalent
analytic version (the Prékopa-Leindler inequality, see e.g. [8, Theorem 8.14])
and the fact that the convexity/compactness assumption can be weakened
to Lebesgue measurability (see [9]), have allowed it to move to much wider
fields. It implies very important inequalities such as the isoperimetric and
Urysohn inequalities (see e.g. [16, page 382]), and it has been the starting
point for new developments like the Lp-Brunn-Minkowski theory (see e.g.
[10, 11]), or a reverse Brunn-Minkowski inequality (see e.g. [13]), among
many others. It would not be possible to collect here all references regard-
ing versions, applications and/or generalizations of the Brunn-Minkowski
inequality. For extensive and beautiful surveys on them we refer to [1, 5].

Next we move to the discrete setting, i.e., we consider finite sets of (inte-
ger) points which are not necessarily full-dimensional unless indicated oth-
erwise. It can easily be seen that one cannot expect to obtain a Brunn-
Minkowski inequality for the cardinality in the classical form. Indeed, simply
taking A = {0} to be the origin and any finite set B ⊂ Zn, then

|A + B|1/n < |A|1/n + |B|1/n.

Therefore, a discrete Brunn-Minkowski type inequality should either have a
different structure or involve modifications of the sets.

In [6], Gardner and Gronchi obtained a beautiful and powerful discrete
Brunn-Minkowski inequality: they proved that if A,B are finite subsets of
the integer lattice Zn, with dimension dimB = n, then

(1.2) |A + B| ≥ ∣∣DB
|A| + DB

|B|
∣∣.

Here DB
|A|, D

B
|B| are B-initial segments: for any m ∈ N, DB

m is the set of the
first m points of Zn

+ in the so-called “B-order”, which is a particular order
defined on Zn

+ which depends only on the cardinality of B. For a proper
definition and a deep study of it we refer the reader to [6]. As consequences
of (1.2) they also get two additional nice discrete Brunn-Minkowski type
inequalities:

(1.3) |A + B|1/n ≥ |A|1/n +
1

(n!)1/n

(|B| − n
)1/n
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and, if |B| ≤ |A|, then

|A + B| ≥ |A|+ (n− 1)|B|+ (|A| − n
)(n−1)/n(|B| − n

)1/n − n(n− 1)
2

.

These inequalities improve previous results obtained by Ruzsa in [14, 15].

2. How to transform a discrete set. The main results

An alternative way to get a “classical” Brunn-Minkowski type inequality
might be to transform (one of) the sets involved in the problem, either by
adding or removing some points. Then the question arises as to how many
points one should add/remove to ensure the reliability of a Brunn-Minkowski
inequality.

2.1. Transforming one set by adding extra points. In order to guess
how many points one should add, we consider two lattice cubes Cn

r1
and Cn

r2
:

it is clear that Cn
r1

+ Cn
r2

= Cn
r1+r2

, and therefore,

|Cn
r1

+ Cn
r2
| = (r1 + r2 + 1)n < (r1 + r2 + 2)n =

(
|Cn

r1
|1/n + |Cn

r2
|1/n

)n
.

So, in order to reverse the above inequality we must add to Cn
r1

, say, a
suitable amount of points, such that the new set C̄n

r1
satisfies

(2.1)
∣∣C̄n

r1
+ Cn

r2

∣∣ ≥ (r1 + r2 + 2)n.

In this spirit, in Section 4 we prove the following theorem.

Theorem 2.1. Let A,B ⊂ Zn be finite, A,B 6= ∅. Then

(2.2)
∣∣Ā + B

∣∣1/n ≥ |A|1/n + |B|1/n,

and equality holds when both A and B are lattice cubes.

Here Ā is an extension of A obtained by adding new integer points, by
means of a recursive procedure, as follows. If Λ ⊂ Zk (finite), k ∈ {1, . . . , n},
for each m ∈ Zr, r ∈ {1, . . . , k − 1}, we write Λ(m) to represent the section
of Λ at m orthogonal to the coordinate plane Rek−r+1 + · · ·+ Rek, i.e.,

Λ(m) =
{
p ∈ Zk−r : (p,m) ∈ Λ

}
.

Next, for r = 1, let m0 ∈ πk(Λ) be such that
∣∣Λ(m0)

∣∣ = maxm

∣∣Λ(m)
∣∣.

Certainly the integer m0 providing the maximum section is not necessarily
unique. In that case, one can choose arbitrarily any of the possibilities. In
order to establish a criterion for the construction we set

m0 = max
{

m′ ∈ πk(Λ) :
∣∣Λ(m′)

∣∣ = max
m

∣∣Λ(m)
∣∣
}

.

Finally, we define the function

σk : {Λ ⊂ Zk : Λ finite} −→ {Λ ⊂ Zk : Λ finite}
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given by

σk(Λ) =

{
Λ ∪ {max Λ + 1} if k = 1,

Λ ∪
(
Λ(m0)×

{
max{πk(Λ)}+ 1

})
if k > 1;

i.e., σk acts on Λ just adding the maximum section Λ(m0) to the set in
the position max{πk(Λ)} + 1. As before this choice is irrelevant, and the
maximum section Λ(m0) can be placed at any m 6∈ πk(Λ).

We are now ready to recursively define Ā for our original set A ⊂ Zn. In a
first step, we construct a new set A+

1 by means of its sections: A+
1 = σn(A)

(see Figure 1).

Figure 1. A discrete set A (left) and the set A+
1 (right).

In the second one we take (see Figure 2)

A+
2 =

⋃

m∈πn(A+
1 )

(
σn−1

(
A+

1 (m)
)× {m}

)
.

In the k-th step, k ≥ 2, we have

A+
k =

⋃

m∈πn−k+2,...,n(A+
k−1)

(
σn−k+1

(
A+

k−1(m)
)× {m}

)
.

Then we define Ā = A+
n .

Figure 2. The sets A+
2 (left) and Ā = A+

3 (right) for the
discrete set A in Figure 1.

In the case of a lattice cube we have C̄n
r1

= Cn
r1+1. Therefore C̄n

r1
+ Cn

r2
=

Cn
r1+r2+1, and thus (2.1) holds with equality.
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We note the recursive nature of the construction of Ā, in which the action
of adding the maximum section to the given set is repeatedly used onto
every successive section of the original set A. Therefore, the following two
properties are evident:

(2.3) i) πn

(
Ā

)
= πn(A+

1 ) and ii) Ā(m) = A+
1 (m).

In Section 5 we will show that the number of additional points in |A|
is somehow controlled. Moreover, upper and lower bounds for the ratio∣∣Ā∣∣/|A| and the difference

∣∣Ā∣∣− |A| can be provided. In the first case only
the dimension will play a role, whereas for the difference it will depend on
the structure and the cardinality of A. We prove the following proposition:

Proposition 2.1. Let n ≥ 1 and let A ⊂ Zn be finite and non-empty. Then

(2.4) 1 ≤ |Ā|
|A| ≤ 2n

and

(2.5) 2n − 1 ≤ ∣∣Ā∣∣− |A| ≤
n∏

i=1

(∣∣πi(A)
∣∣ + 1

)
−

n∏

i=1

∣∣πi(A)
∣∣.

In general these bounds cannot be improved.

Remark 2.1. The set Ā can be different (both its structure and cardinality)
when either the role of the coordinate axes is interchanged in its construc-
tion, or if we use a different criterion for the choice of m0, or even if we
add as a “doubled” maximum section an arbitrary point set with the same
cardinality. In any case, the number of additional points is controlled (see
Proposition 2.1). Moreover, the above choices for the construction of Ā are
not relevant for the proofs of the results. Thus, in order to bound from
above |A|1/n + |B|1/n in Theorem 2.1, one can choose in the definition of Ā
the options (for m0 and the axis order) making

∣∣Ā + B
∣∣ minimum, which

surely will depend on the original sets A and B.

We also note that although the cardinality of Ā is obviously enlarged, in
many cases the difference between

∣∣Ā + B
∣∣ and |A+B| may be not too big;

see Example 3.2, where indeed one has
∣∣Ā + B

∣∣ = |A + B|.
2.2. Transforming one set by removing points. Similarly, instead of
adding points to the original (finite) set A ⊂ Zn, A 6= ∅, we may reduce it
to define a new set r(A) in such a way that

(2.6) r
(
Ā

)
= A.

To this aim, first we define the function

δk : {Λ ⊂ Zk : Λ finite} −→ {Λ ⊂ Zk : Λ finite}
given by

δk(Λ) =

{
Λ \ {maxΛ} if k = 1,

Λ \
(
Λ(m0)×

{
m0

})
if k > 1;
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i.e., δk acts on Λ just removing the maximum section Λ(m0) from the set.
To complete the picture we set δk(∅) = ∅. In this way, δk is the left inverse
function of σk.

Now, for 1 ≤ k < n, we write

A−k =
⋃

m∈πk+1,...,n(A−k−1)

(
δk

(
A−k−1(m)

)× {m}
)
,

with A−0 = A (see Figure 3). Then we define

r(A) = δn

(
A−n−1

)
.

Figure 3. Transforming a discrete set A (left) into r(A) (right).

We note on the one hand that, from the definition of r(A), (2.6) holds
because δk

(
σk(Λ)

)
= Λ for all k = 1, . . . , n. On the other hand, since there

are different ways to construct r(A), (cf. Remark 2.1), it is possible to add
every successive maximum section in such a way that

(2.7) r(A) ⊂ A.

Remark 2.2. We observe that r(A) might be the empty set. Actually,
r(A) 6= ∅ necessarily implies that |A| ≥ 2n. Indeed, A−n−1 must contain at
least two points to assure that r(A) 6= ∅; this yields that at least four points
belong to A−n−2 and, recursively, that |A| ≥ 2n.

Using this technique, in Section 4 we prove the following theorem.

Theorem 2.2. Let A,B ⊂ Zn be finite, A,B 6= ∅. Then

(2.8) |A + B|1/n ≥ ∣∣r(A)
∣∣1/n + |B|1/n,

and equality holds when both A and B are lattice cubes.

In fact we prove that the discrete inequalities (2.2) and (2.8) are equivalent
(see Proposition 4.1).

In [12], Matolcsi and Ruzsa consider the sum set A+kB = A+B+ (k). . .+B,
and provide a lower bound for its cardinality when dimB = n and A ⊂
conv B. In [2], Böröczky, Santos and Serra characterize the sets A and B for
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which equality holds. As a direct consequence of Theorem 2.2 another bound
for the cardinality |A + kB| can be obtained, without additional conditions
on the sets A and B:

Corollary 2.1. Let A,B ⊂ Zn be finite, A,B 6= ∅. Then

|A + kB|1/n ≥ |A|1/n + k
∣∣r(B)

∣∣1/n
.

Equality holds when A and B are lattice cubes.

In Section 6 we also show that the classical Brunn-Minkowski inequality
(1.1) for compact sets can be obtained as a consequence of the discrete
version (2.8):

Theorem 2.3. The discrete Brunn-Minkowski inequality (2.8) implies the
classical Brunn-Minkowski inequality (1.1).

We note that it is not possible to directly obtain any of the above dis-
crete Brunn-Minkowski inequalities from the classical one (1.1) by using the
method of replacing the points by suitable compact sets. As pointed out by
Gardner and Gronchi in [6, pp. 3996–3997],

it is worth remarking that the obvious idea of replacing the points in
the two finite sets by small congruent balls and applying the classical
Brunn-Minkowski inequality to the resulting compact sets is doomed
to failure. The fact that the sum of two congruent balls is a ball of
twice the radius introduces an extra factor of 1/2 that renders the
resulting bound weaker than even the trivial bound (11) below.

We clarify that (11) in [6] coincides with (4.1) of the present paper.

3. On the different Brunn-Minkowski type inequalities

Before starting the proofs of our main theorems, we observe that inequal-
ities (2.2) and (1.2) (or even (1.3)) are not comparable. For instance, if
A = B = {0, e1, e2}, then DB

|A| = A and DB
|B| = B, and obviously equality

holds in (1.2), but we have a strict inequality in (2.2). Therefore (1.2) pro-
vides a stronger bound than (2.2). However, if A = B = C2

2 then A+B = C2
4

and, moreover, DB
|A| = DB

|B| is the lattice simplex conv{0, 7e1, e2} ∩ Z2 (we
refer the reader to [6, Section 5] for the construction, see Figure 4).

Figure 4. DB
|A| for A = B = C2

2 (left) and DB
|A| + DB

|B| (right).

Hence
|A + B| = 25 >

∣∣∣DB
|A| + DB

|B|
∣∣∣ = 24,
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whereas we have equality in (2.2). In this case, the bound provided by (2.2)
is stronger than (1.2) (or (1.3)).

It can also be easily seen, by just considering the corresponding extremal
sets, that the bound of Matolcsi and Ruzsa in [12] for |A + kB| and the one
provided by Corollary 2.1 are not comparable.

As mentioned in the introduction, in most cases the classical Brunn-
Minkowski inequality for the cardinality is not satisfied. Also lattice cubes
or elongated simplices do not verify it. There are however particular sets or
families of sets for which the inequality keeps its usual form, and so (2.2)
would give a weaker bound. Nevertheless, as Example 3.2 will show, (2.2)
may turn out to be a useful tool in order to prove the classical Brunn-
Minkowski inequality for certain sets. This section is also devoted to study-
ing the few examples we could find at this respect.

Example 3.1. For finite A,B ⊂ Zn, the relation

|A + B| ≤ |A| |B|
trivially holds (see e.g. [17, Chapter 2]), and it is easy to check that equality
holds if and only if any point of A+B has a unique expression as a sum of a
point of A and a point of B. Under this assumption, i.e., if |A+B| = |A| |B|,
and furthermore, if |A|, |B| ≥ 2n (they are large enough), then A,B satisfy
a classical Brunn-Minkowski type inequality:

|A + B|1/n = |A|1/n|B|1/n ≥ max
{

2|A|1/n, 2|B|1/n
}
≥ |A|1/n + |B|1/n.

Example 3.2. We recall that a compact convex set K ⊂ Rn is called un-
conditional if for any (x1, . . . , xn) ∈ K then (ε1x1, . . . , εnxn) ∈ K for all εi ∈
{−1, 1}, i = 1, . . . , n. We consider the following sets. Given an unconditional
compact convex set K ⊂ Rn, let A = (K\⋃n

i=1 Hi) ∩ Zn. Furthermore, let
B ⊂ Zn (finite) satisfy the following condition: if (x1, . . . , xn) ∈ B, there ex-
ist εi ∈ {−1, +1}, i = 1, . . . , n, such that (x1, . . . , xi−1, xi+εi, xi+1, . . . , xn) ∈
B for all i = 1, . . . , n (see Figure 5).

Figure 5. An example of a set B in the above construction.

As mentioned in Remark 2.1, there are different ways of constructing Ā.
In the case of A = (K\⋃n

i=1 Hi) ∩ Zn, we place the successive maximum
sections on the coordinates hyperplanes. In this way we even have

Ā + B = A + B.
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Indeed, given x = (x1, . . . , xn) ∈ Ā \ A and b = (b1, . . . , bn) ∈ B let I ⊂
{1, . . . , n} be such that xi = 0 if i ∈ I and xi 6= 0 otherwise. On one hand,
there exist εi ∈ {−1, 0, +1}, i = 1, . . . , n, such that (b1+ε1, . . . , bn+εn) ∈ B,
and so that εi = 0 if and only if i /∈ I. On the other hand, and denoting
by ε = (ε1, . . . , εn), we have that x − ε ∈ A because K is unconditional.
Then x + b = (x− ε) + (b + ε) ∈ A + B, which shows that, Ā + B ⊂ A + B.
The reverse inclusion in obvious. Therefore, although we are adding points
in the construction of Ā, the cardinality of Ā + B does not increase (with
respect to that of A + B). Hence, Theorem 2.1 yields

|A + B|1/n ≥ |A|1/n + |B|1/n.

We also note that for the constructed set A, the above inequality does not
hold for arbitrary B.

4. Proofs of the discrete Brunn-Minkowski inequalities

We start this section by recalling the simple inequality

(4.1) |A + B| ≥ |A|+ |B| − 1,

for finite subsets A,B in Zn (see e.g. [17, Chapter 2]). Since the cardinality
| · | is translation invariant, we can assume that both the maximum point
of A and the minimum point of B in the lexicographical order are at the
origin of coordinates. Then it is clear that A + B ⊃ A ∪ B, and hence
|A + B| ≥ |A ∪B| = |A|+ |B| − 1.

We observe that (4.1) provides, in particular, a 1-dimensional discrete
Brunn-Minkowski inequality.

Before the proof of Theorem 2.1 we state two auxiliary results. The first
one may be regarded as a discrete counterpart of the layer cake formula.

Lemma 4.1. Let Ω ⊂ Z be finite and let f : Ω −→ Z≥0. Then

∑

m∈Ω

f(m) =
maxΩ f∑

t=1

∣∣∣
{
m ∈ Ω : f(m) ≥ t

}∣∣∣.

Proof. Let N = maxm∈Ω f(m), and we consider variables xi, i = 1, . . . , N .
Then we have the relation

∑

m∈Ω

(
x1 + x2 + · · ·+ xf(m)

)
=

N∑

t=1

xt

∣∣∣
{
m ∈ Ω : f(m) ≥ t

}∣∣∣,

because the variable xt appears in the left-hand side expression if and only
if f(m) ≥ t. Then, setting x1 = · · · = xN = 1, we get the result. ¤
Lemma 4.2. Let Ω ⊂ Z be finite and let f : Ω −→ Z≥0. Then, for any
r,N ∈ Z>0, we have

r
N∑

t=1

∣∣∣
{
m ∈ Ω : f(m) ≥ t

}∣∣∣ =
∑

t= 1
rN

, 2
rN

,...,1

∣∣∣∣
{

m ∈ Ω :
f(m)

N
≥ t

}∣∣∣∣ .
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Proof. First we rewrite
∑

t= 1
rN

, 2
rN

,...,1

∣∣∣∣
{

m ∈ Ω :
f(m)

N
≥ t

}∣∣∣∣ =
∑

t= 1
rN

,..., 1
N

∣∣∣∣
{

m ∈ Ω :
f(m)

N
≥ t

}∣∣∣∣

+
∑

t= r+1
rN

,..., 2
N

∣∣∣∣
{

m ∈ Ω :
f(m)

N
≥ t

}∣∣∣∣

+ · · ·+
∑

t=
(N−1)r+1

rN
,...,1

∣∣∣∣
{

m ∈ Ω :
f(m)

N
≥ t

}∣∣∣∣ .

We note that, for each of the above sums, i.e., for all i = 0, . . . , N − 1,
∑

t= ir+1
rN

,..., i+1
N

∣∣∣∣
{

m ∈ Ω :
f(m)

N
≥ t

}∣∣∣∣ =
∑

t= ir+1
r

,...,i+1

∣∣∣
{
m ∈ Ω : f(m) ≥ t

}∣∣∣

=
∑

t=i+ 1
r
,...,i+1

∣∣∣
{
m ∈ Ω : f(m) ≥ i + 1

}∣∣∣

= r
∣∣∣
{
m ∈ Ω : f(m) ≥ i + 1

}∣∣∣,
and thus we can conclude that

∑

t= 1
rN

, 2
rN

,...,1

∣∣∣∣
{

m ∈ Ω :
f(m)

N
≥ t

}∣∣∣∣ = r
N−1∑

i=0

∣∣∣
{
m ∈ Ω : f(m) ≥ i + 1

}∣∣∣.

This proves the result. ¤

Now we are in a position to prove our main result.

Proof of Theorem 2.1. We will show (2.2) by (finite) induction on the di-
mension n. The case n = 1 is a direct consequence of (4.1):

∣∣Ā + B
∣∣ ≥ ∣∣Ā∣∣ + |B| − 1 = |A|+ |B|.

So, we will suppose that the inequality is true for n − 1. We first observe
that for all m1,m2 ∈ Z, it is clear that

(
Ā + B

)
(m1 + m2) ⊃ Ā(m1) + B(m2).

Then, taking m1 ∈ πn

(
Ā

)
= πn(A+

1 ) (cf. (2.3) i)) and m2 ∈ πn(B), and
applying induction hypothesis (i.e., (2.2) in Zn−1), we get (see also (2.3) ii))

∣∣∣
(
Ā + B

)
(m1 + m2)

∣∣∣ ≥
∣∣Ā(m1) + B(m2)

∣∣ =
∣∣∣A+

1 (m1) + B(m2)
∣∣∣

≥
(∣∣A+

1 (m1)
∣∣1/(n−1) +

∣∣B(m2)
∣∣1/(n−1)

)n−1
.

(4.2)

For the sake of brevity we denote by

cA = max
m∈Z

∣∣A(m)
∣∣ > 0, cB = max

m∈Z
∣∣B(m)

∣∣ > 0,



ON A DISCRETE BRUNN-MINKOWSKI TYPE INEQUALITY 11

and let

c =
(
c
1/(n−1)
A + c

1/(n−1)
B

)n−1
and θ =

c
1/(n−1)
B

c
1/(n−1)
A + c

1/(n−1)
B

∈ (0, 1).

We observe that cA+
1

= cA. Furthermore, let p, q ∈ N satisfying

(4.3)
p

q
∈ Q satisfy

p

q
≤ c.

Finally, for M = A,A+
1 , B or Ā + B, we denote by fM : Z −→ Q≥0 the

functions given by

fA(m) =

∣∣A(m)
∣∣

cA
, f

A+
1

(m) =

∣∣A+
1 (m)

∣∣
cA

, fB (m) =

∣∣B(m)
∣∣

cB
, and

f
Ā+B

(m) =
q

p

∣∣∣
(
Ā + B

)
(m)

∣∣∣.

Using (4.2) we get
∣∣∣
(
Ā + B

)
(m1 + m2)

∣∣∣ ≥
(∣∣A+

1 (m1)
∣∣1/(n−1) +

∣∣B(m2)
∣∣1/(n−1)

)n−1

= c

(
c
1/(n−1)
A

c1/(n−1)
f

A+
1

(m1)1/(n−1) +
c
1/(n−1)
B

c1/(n−1)
fB (m2)1/(n−1)

)n−1

= c

(
(1− θ)f

A+
1

(m1)1/(n−1) + θfB (m2)1/(n−1)

)n−1

≥ c min
{
f

A+
1

(m1), fB (m2)
} ≥ p

q
min

{
f

A+
1

(m1), fB (m2)
}
.

Thus, we have obtained the functional inequality

(4.4) f
Ā+B

(m1 + m2) ≥ min
{
f

A+
1

(m1), fB (m2)
}
.

Now we observe, on one hand, that the super-level sets{
m ∈ Z : fA(m) ≥ t

}
,

{
m ∈ Z : f

A+
1

(m) ≥ t
}
,

{
m ∈ Z : fB (m) ≥ t

}

are non-empty for all t ∈ [0, 1] and, moreover, the definition of A+
1 yields∣∣∣

{
m ∈ Z : f

A+
1

(m) ≥ t
}∣∣∣ =

∣∣∣
{
m ∈ Z : fA(m) ≥ t

}∣∣∣ + 1.

On the other hand, (4.4) implies that{
m ∈ Z : f

Ā+B
(m) ≥ t

} ⊃ {
m ∈ Z : f

A+
1

(m) ≥ t
}

+
{
m ∈ Z : fB (m) ≥ t

}
,

and then, using (4.1) for n = 1 and the above identity, we get∣∣∣
{
m ∈ Z : f

Ā+B
(m) ≥ t

}∣∣∣

≥
∣∣∣
{
m ∈ Z : f

A+
1

(m) ≥ t
}∣∣∣ +

∣∣∣
{
m ∈ Z : fB (m) ≥ t

}∣∣∣− 1

=
∣∣∣
{
m ∈ Z : fA(m) ≥ t

}∣∣∣ +
∣∣∣
{
m ∈ Z : fB (m) ≥ t

}∣∣∣.

(4.5)
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We also observe that the cardinality of
∣∣Ā + B

∣∣ can be expressed as
∣∣Ā + B

∣∣ =
∑

m∈Z

∣∣∣
(
Ā + B

)
(m)

∣∣∣ =
∑

m∈Z

p

q
f

Ā+B
(m),

where we write the sum over Z for the sake of brevity. Analogously,

|A| =
∑

m∈Z
cAfA(m) and |B| =

∑

m∈Z
cBfB (m).

Lemma 4.1 applied to the (integer) function f(m) = p f
Ā+B

(m) leads to

∣∣Ā + B
∣∣ =

1
q

∑

m∈Z
p f

Ā+B
(m) =

1
q

p maxZ f
Ā+B∑

t=1

∣∣∣
{
m ∈ Z : p f

Ā+B
(m) ≥ t

}∣∣∣,

and since maxm∈Z f
Ā+B

(m) ≥ 1 by (4.4), we get

∣∣Ā + B
∣∣ ≥ 1

q

p∑

t=1

∣∣∣
{
m ∈ Z : p f

Ā+B
(m) ≥ t

}∣∣∣.

Let c′ = p cAcB. Applying Lemma 4.2 to the above sum for N = p and
r = cAcB, and then using (4.5), we obtain

∣∣Ā + B
∣∣ ≥ 1

q

1
cAcB

∑

t= 1
c′ ,

2
c′ ,...,1

∣∣∣
{
m ∈ Z : f

Ā+B
(m) ≥ t

}∣∣∣

≥ 1
q

1
cAcB

∑

t= 1
c′ ,...,1

[∣∣∣
{
m ∈ Z : fA(m) ≥ t

}∣∣∣+
∣∣∣
{
m ∈ Z : fB (m) ≥ t

}∣∣∣
]
.

(4.6)

Now, Lemma 4.2 for N = cA, r = p cB and Lemma 4.1 yield

∑

t= 1
c′ ,...,1

∣∣∣
{
m ∈ Z : fA(m) ≥ t

}∣∣∣ = p cB

cA∑

t=1

∣∣∣
{
m ∈ Z : cAfA(m) ≥ t

}∣∣∣

= p cB

∑

m∈Z
cAfA(m) = p cB|A|,

(4.7)

and analogously (now N = cB and r = p cA in Lemma 4.2),

(4.8)
∑

t= 1
c′ ,...,1

∣∣∣
{
m ∈ Z : fB (m) ≥ t

}∣∣∣ = p cA|B|.

Then, (4.6), (4.7) and (4.8) together, give

(4.9)
∣∣Ā + B

∣∣ ≥ 1
q

1
cAcB

(
p cB|A|+ p cA|B|

)
=

p

q

( |A|
cA

+
|B|
cB

)
.

Since (4.9) holds for any rational number p/q ≤ c (cf. (4.3)), by a limit pro-
cedure we also get inequality (4.9) for the real positive number c. And then,
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applying the (reverse) Hölder inequality (see e.g. [3, Theorem 1, p. 178])
with parameters 1/n and −1/(n− 1), we conclude that

∣∣Ā + B
∣∣ ≥ c

( |A|
cA

+
|B|
cB

)
≥

(
|A|1/n + |B|1/n

)n
.

Finally we prove that the inequality is sharp. Indeed, let A,B be the
lattice cubes A = Cn

m1
and B = Cn

m2
. Then Ā = Cn

m1+1, and hence Ā+B =
Cn

m1+m2+1. Therefore,
∣∣Ā + B

∣∣ = (m1 + m2 + 2)n =
(
|A|1/n + |B|1/n

)n
. ¤

The following corollary is a direct consequence of Theorem 2.1.

Corollary 4.1. Let A,B be finite subsets of Zn, A,B 6= ∅. Then

|A + B| ≥
(
|A|1/n + |B|1/n

)n
−

∣∣∣
(
Ā + B

) \(A + B)
∣∣∣.

We observe that our approach involves not only finite sets of Zn, but can
be extended to general (finite) sets of Rn by suitably defining Ā. Therefore,
Theorem 2.1 can be stated for any finite (non-empty) set of Rn.

We conclude this section by proving the second version of the discrete
Brunn-Minkowski inequality.

Proof of Theorem 2.2. If r(A) = ∅ then the inequality |A + B|1/n ≥ |B|1/n

trivially holds. So we assume that r(A) 6= ∅. In this case, Theorem 2.1
applied to the sets r(A) and B, together with (2.7) yields

|A + B|1/n ≥ ∣∣r(A) + B
∣∣1/n ≥ ∣∣r(A)

∣∣1/n + |B|1/n.

The equality case is a consequence of the equality case in Theorem 2.1. ¤

Moreover, it is easy to see that (2.2) and (2.8) are equivalent:

Proposition 4.1. Let A,B ⊂ Zn be finite, A,B 6= ∅. Then (2.2) and (2.8)
are equivalent.

Proof. In the proof of Theorem 2.2 we have already proved that (2.2) implies
(2.8). In order to prove the converse we just have to note that the operator
r(·) has been defined in such a way that r

(
Ā

)
= A for any A 6= ∅ (cf. (2.6)).

Therefore, applying (2.8) to Ā and B we get
∣∣Ā + B

∣∣1/n ≥ ∣∣r(Ā)∣∣1/n + |B|1/n = |A|1/n + |B|1/n. ¤

5. Bounding the cardinality of the set Ā

Let A ⊂ Zn be finite and non-empty. In this section we will show that
the number of additional points in Ā cannot be too large, and depends only
on (the structure of) A and on the dimension.
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If we intend to control the number of points that we add to A, first we have
to determine how many new points we have in the first step A+

1 . Clearly,

(5.1)
∣∣πi(A+

1 )
∣∣ =

{ ∣∣πi(A)
∣∣ for i = 1, . . . , n− 1,∣∣πn(A)
∣∣ + 1 for i = n.

Proposition 5.1. Let n ≥ 2 and let A ⊂ Zn be finite and non-empty. Then

(5.2) |A+
1 | − |A| ≤

n−1∏

i=1

∣∣πi(A)
∣∣.

Proof. Since A ⊂ A+
1 , then |A+

1 | − |A| = |A+
1 \A| = maxm∈Z

∣∣A(m)
∣∣, so it

suffices to prove that for all m ∈ Z,

(5.3)
∣∣A(m)

∣∣ ≤
n−1∏

i=1

∣∣πi(A)
∣∣,

which follows from the (discrete) Loomis-Whitney inequality: it can be seen
by replacing each point in A(m) by a small cube with edges parallel to the
coordinate lines Rei, i = 1, . . . , n, that

∣∣A(m)
∣∣ ≤

n−1∏

i=1

∣∣∣πi

(
A(m)

)∣∣∣

(see e.g. [7, Section 5] and the references within). This shows (5.3). ¤
In order to establish the announced upper bounds for the cardinality of Ā,

we also need the following general identity for natural numbers. For the sake
of brevity we set the meaningless products to be 1. We use this convention
here and throughout the rest of the paper.

Lemma 5.1. Let a1, . . . , an ∈ N. Then
n∑

k=1

(
n−k∏

i=1

ai

n∏

i=n−k+2

(ai + 1)

)
=

n∏

i=1

(ai + 1)−
n∏

i=1

ai.

Proof. A recursive procedure shows that
n∏

i=1

ai +
n∑

k=1

(
n−k∏

i=1

ai

n∏

i=n−k+2

(ai + 1)

)

=
n∏

i=1

ai +
n−1∏

i=1

ai +
n∑

k=2

(
n−k∏

i=1

ai

n∏

i=n−k+2

(ai + 1)

)

=
n−1∏

i=1

ai(an + 1) +
n−2∏

i=1

ai(an + 1) +
n∑

k=3

(
n−k∏

i=1

ai

n∏

i=n−k+2

(ai + 1)

)

=
n−2∏

i=1

ai

n∏

i=n−1

(ai+1) +
n∑

k=3

(
n−k∏

i=1

ai

n∏

i=n−k+2

(ai+1)

)
= · · · =

n∏

i=1

(ai+1).¤
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We are now ready to provide the bounds for the cardinality of Ā: we
prove Proposition 2.1.

Proof of Proposition 2.1. First we prove (2.4). It is clear that |A+
1 | ≤ 2|A|,

and equality holds if and only if
∣∣πn(A)

∣∣ = 1. Moreover, |A+
i+1| ≤ 2|A+

i | for
all i = 1, . . . , n− 1, with equality if and only if

∣∣πn−i(A+
i (m))

∣∣ = 1 for every
m ∈ πn−i+1,...,n(A+

i ). Then we get
∣∣Ā∣∣/|A| ≤ 2n, and equality holds if and

only if A is a singleton.
Finally we observe that the ratio

∣∣Ā∣∣/|A| may be, nevertheless, arbitrarily
small, as it is shown by considering A = Cn

r , r ∈ N. In this case,∣∣Ā∣∣
|A| =

|Cn
r+1|
|Cr| =

(
1 +

1
r + 1

)n

,

which tends to 1 when r →∞. This shows the lower bound in (2.4) as well
as its tightness.

Next we prove (2.5). The lower bound is trivial, and equality holds if and
only if A is a singleton. For the upper bound, if n = 1 then

∣∣Ā∣∣ = |A| + 1,
and (2.5) trivially holds. Therefore we assume that n ≥ 2.

We observe that, in order to construct Ā, we first add the new points
corresponding to A+

1 , then the new points of σn−1

(
A+

1 (m)
)

for each m ∈
πn(A+

1 ), and so on. Therefore:

1st step: By (5.2) we add, at most,
∏n−1

i=1

∣∣πi(A)
∣∣ points.

2nd step: Using again (5.2), we can assure that we add
∣∣πn(A+

1 )
∣∣ =∣∣πn(A)

∣∣ + 1 times (cf. (5.1)), at most,
∏n−2

i=1

∣∣πi(A)
∣∣ points.

kth step: In short, for k = 1, . . . , n we are adding, at most,

(5.4)
n−k∏

i=1

∣∣πi(A)
∣∣

n∏

i=n−k+2

(∣∣πi(A)
∣∣ + 1

)

new points.
Altogether, and using Lemma 5.1, we conclude that

∣∣Ā∣∣− |A| ≤
n∑

k=1

(
n−k∏

i=1

∣∣πi(A)
∣∣

n∏

i=n−k+2

(∣∣πi(A)
∣∣ + 1

))

=
n∏

i=1

(∣∣πi(A)
∣∣ + 1

)
−

n∏

i=1

∣∣πi(A)
∣∣.

In order to show that the upper bound in (2.5) may be attained it is enough
to consider a lattice orthogonal box A (see Figure 6). ¤

6. From the discrete version to the continuous one

For each k ∈ N, we consider the family of all (closed) cubes of edge-
length 2−k, with vertices in the lattice 2−kZn. This family tessellates the
whole space, i.e., covers Rn and its elements have disjoint interiors.



16 MARÍA A. HERNÁNDEZ CIFRE, DAVID IGLESIAS, AND JESÚS YEPES NICOLÁS

Figure 6. The upper bound in (2.5) is sharp: a lattice box
A (left), A+

1 (middle) and Ā (right).

Definition 6.1. Let K ⊂ Rn be a compact set. The k-discretization of K,
k ∈ N, is defined as

Kk =
{

x ∈ 2−kZn :
(
x +

[
0, 2−k

]n
)
∩K 6= ∅

}
.

Given a compact set K ⊂ Rn, a standard straightforward computation
shows that

K =
∞⋂

k=1

(
Kk +

[
0, 2−k

]n
)

.

This, together with the fact that

vol

( ∞⋂

k=1

(
Kk +

[
0, 2−k

]n
))

= lim
k→∞

vol
(
Kk +

[
0, 2−k

]n
)

because
{
Kk +

[
0, 2−k

]n}
k

is a decreasing sequence (see e.g. [4, Proposi-
tion 1.2.5 (b)]), allows to deduce the following result:

Lemma 6.1. Let K ⊂ Rn be a non-empty compact set. Then

vol(K) = lim
k→∞

|Kk|
2kn

.

We conclude the paper by proving that the classical Brunn-Minkowski
inequality for compact sets can be obtained as a consequence of Theorem 2.1.

Proof of Theorem 2.3. For each k ∈ N, let Kk, Lk be the k-discretizations of
K, L, respectively. Since K and L are compact, both Kk, Lk are finite sets
and we can use (2.8) to deduce that, for any k ∈ N, we have

|Kk + Lk|1/n ≥ ∣∣r(Kk)
∣∣1/n + |Lk|1/n.

Therefore

(6.1) lim
k→∞

( |Kk + Lk|
2kn

)1/n

≥ lim
k→∞

(∣∣r(Kk)
∣∣

2kn

)1/n

+ lim
k→∞

( |Lk|
2kn

)1/n

.

Now, for k ∈ N, we define the set

Fk =
(
Kk +

[
0, 2−k

]n
)

+
(
Lk +

[
0, 2−k

]n
)

.
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It is clear that F1 ⊃ F2 ⊃ . . . and, moreover,

K + L =
∞⋂

k=1

Fk.

Hence

vol(K + L) = vol

( ∞⋂

k=1

Fk

)
= lim

k→∞
vol(Fk)

(see e.g. [4, Proposition 1.2.5 (b)]) and then, from

Fk = Kk + Lk +
[
0, 2−k+1

]n ⊃ Kk + Lk +
[
0, 2−k

]n

we obtain

vol(K + L)1/n = lim
k→∞

vol(Fk)1/n ≥ lim
k→∞

( |Kk + Lk|
2kn

)1/n

.

Now, using (6.1) and Lemma 6.1 we immediately get

vol(K + L)1/n ≥ lim
k→∞

(∣∣r(Kk)
∣∣

2kn

)1/n

+ lim
k→∞

(∣∣Lk

∣∣
2kn

)1/n

= lim
k→∞

(∣∣r(Kk)
∣∣

2kn

)1/n

+ vol(L)1/n.

Thus, in order to finish the proof, it suffices to show that

(6.2) lim
k→∞

∣∣r(Kk)
∣∣

2kn
= vol(K).

For the sake of brevity we denote by Kk,i = (Kk)−i−1\(Kk)−i , i = 1, . . . , n,
i.e., the set of all points removed from Kk in the i-th step of the construction
of r(Kk). Then it is clear that

vol
(
Kk,i +

[
0, 2−k

]n
)

= vol
(
π(i)(Kk,i) +

[
0, 2−k

]n
)

and hence
|Kk,i|
2kn

= vol
(
Kk,i +

[
0, 2−k

]n
)

= vol
(
π(i)(Kk,i) +

[
0, 2−k

]n
)

≤ vol
(
π(i)(Kk) +

[
0, 2−k

]n
)

=

∣∣π(i)(Kk)
∣∣

2kn
.

Since K is compact,
(
π(i)(K)

)
k

= π(i)(Kk), and then Lemma 6.1 yields

0 = vol
(
π(i)(K)

)
= lim

k→∞

∣∣∣
(
π(i)(K)

)
k

∣∣∣
2kn

= lim
k→∞

∣∣π(i)(Kk)
∣∣

2kn
≥ lim

k→∞
|Kk,i|
2kn

,

which implies that

lim
k→∞

|Kk,i|
2kn

= 0.
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With Lemma 6.1 again, this shows that

lim
k→∞

∣∣r(Kk)
∣∣

2kn
= lim

k→∞
|Kk| −

∣∣Kk\r(Kk)
∣∣

2kn
= lim

k→∞
|Kk| −

∑n
i=1 |Kk,i|

2kn

= lim
k→∞

|Kk|
2kn

−
n∑

i=1

lim
k→∞

|Kk,i|
2kn

= vol(K).

This proves (6.2) and concludes the proof. ¤
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